Short-term wind power prediction based on GPR-BSO model

نویسندگان

چکیده

Wind power forecasting is a crucial part for the safe and stable operation of wind integration, which under influence different factors such as speed, direction, atmospheric pressure. These bring randomness volatility to makes it less predictable. While, there are very limited studies on describing uncertainty power. Therefore, providing additional information volatility, kernel-based Gaussian Process Regression (GPR) incorporating hyper-parameters intelligent optimization method proposed in this paper. Firstly, solution GPR formulated nonlinear with constraints. Then, an algorithm named Brain-storming (BSO) adopted obtain optimal GPR. Furthermore, performance examined short-term data. Most importantly, BSO can avoid at local optimum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Short-Term Hydro-Thermal Scheduling Based on Mixed Integer Programming with Volatile Wind Power Generation

This study addresses a stochastic structure for generation companies (GenCoʼs) that participate in hydro-thermal self-scheduling with a wind power plant on short-term scheduling for simultaneous reserve energy and energy market. In stochastic scheduling of HTSS with a wind power plant, in addition to various types of uncertainties such as energy price, spinning /non-spinning reserve prices, unc...

متن کامل

Short-term prediction of wind power with a clustering approach

A clustering approach is presented for short-term prediction of power produced by a wind turbine at low wind speeds. Increased prediction accuracy of wind power to be produced at future time periods is often bounded by the prediction model complexity and computational time involved. In this paper, a trade-off between the two conflicting objectives is addressed. First, a set of the most relevant...

متن کامل

Short-term Wind Power Prediction Using GA-ELM

Abstract: Focusing on short-term wind power forecast, a method based on the combination of Genetic Algorithm (GA) and Extreme Learning Machine (ELM) has been proposed. Firstly, the GA was used to prepossess the data and effectively extract the input of model in feature space. Basis on this, the ELM was used to establish the forecast model for short-term wind power. Then, the GA was used to opti...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

Ultra-short-term Wind Power Prediction based on Chaos Phase Space Reconstruction and NWP

Wind power prediction accuracy is important for assessing the security and economy when wind power is connected to the grid, and wind speed is the key factor. This article presents a future four hours prediction scheme that combined chaos phase space reconstruction with NWP method. Historical wind speed data are reconstructed as phase space vectors, which are used as the first input part of pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2021

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202125602035